	
	

Transaction Mechanism Methodology for an Embedded Software Controller STYLEREF DocSubtitle * MERGEFORMAT
l

	Transaction Mechanism Methodology for an Embedded Software Controller

	

	

	2004-10-21

	

	Tis Veugen
Dave Boshoven

	

Abstract
This paper describes a methodology for the software design of an embedded software controller (ESWC), being a component in an embedded real-time software system. The methodology is very helpful to the software engineer to design an ESWC in a structured manner, so that the component is likely to be realised in time with the correct functionality.

The methodology has been developed and applied in an evolutionary way in the course of several storage projects at Philips Applied Technologies.

Due to the growing size (measured in Lines Of Code) of embedded real-time software systems in Philips products the methodology can probably be applied successfully to ESWC components in such products.

TABLE OF CONTENTS
41. Introduction

1.1 Static view
4
1.2 Dynamic view
6
1.3 Inventory of problems
7
2. Transaction mechanism
8
2.1 Subcomponents
8
2.2 Transaction
9
2.3 FCC
10
2.4 Transaction Context
11
2.5 Transaction Handler
11
2.6 Overview of stimuli
11
3. Design steps
12
3.1 Command table
12
3.2 Priority table
12
3.3 Transaction table
13
3.4 Dispatch table
14
3.5 Interrupt table
15
3.6 FCC FSMs
16
4. Discussion
16
5. References
16

1. Introduction

Nowadays software systems are so big that a divide and conquer principle is necessary for a successful realisation. A system is decomposed in subsystems and layers. Further decomposition results in components that can be developed by a single person or perhaps a small team. Each component interacts with one or more other components in the system. The static and dynamic interaction between components is described in the architecture of the software system.

Component interaction is often organised in an hierarchical way: one top-level component, denoted as software controller, controls several other lower-level components. This is a pattern that can be encountered recursively in a software system, refer to [SELIC-1].

The kind of software system addressed here executes in an embedded system using a real-time embedded operating system. Such a system shows complex interaction between components because of asynchronous and concurrent behaviour. A software controller in an embedded software system is abbreviated by ESWC: Embedded SoftWare Controller. The design and implementation of an ESWC can be difficult due to complex interaction with many other components.

The question is how to design an ESWC? Many design methods exist based on general rules and techniques. The software engineer must select an appropriate method and then find out how to apply that method to his component. Reuse of a certain method for a similar type of component would be beneficial. The design method presented here is dedicated to the design of an ESWC. This method has evolved in the course of several storage projects at PDSL. In these projects ESWC components have been designed for a DVD recorder and a Harddisk recorder, see table below.

	Project
	Component
	Name

	DVD-recorder 1st gen.
	RAC
	Record and Authoring Controller

	HardDiskModule
	PRM
	Playback and Record Manager

	
	DSRC
	Data Storage and Retrieval Controller

	DVD-recorder 2nd gen.
	DDEC
	DVD decoder

	
	VDEC
	(S)VCD decoder

	HDD-DVD-combi
	HDDN
	Hard Disc Navigator

1.1 Static view

Figure 1 shows the context of an ESWC.

[image: image1.wmf]FC-4

ESWC

UC

FC-2

FC-1

FC-3

library

Figure 1 Context of ESWC
The ESWC itself is controlled by a higher-level User Component UC, a term from [SELIC-1]. The ESWC controls several lower-level Functional Components FCx. Horizontal interaction between components at equal level is also possible, depending on a system’s architecture. Equal-level components interacting with the ESWC are treated as lower-level components and indicated by FCx. Optionally, the ESWC interacts with general libraries. A library is relevant for the design methodology when it exposes asynchronous behaviour, e.g. a timer library notifying an expired timer.

Interaction between a pair of components is indicated by a link with a client role (white square) and a server role (black square). The specification of a link is described by a protocol, refer to [SELIC-2]. The protocol consists of 2 FSMs, one at each role. A typical example (for title playback) of an FSM pair is given in Figure 2 and Figure 3. Note that the client waits in an intermediate state after every asynchronous request. It transitions to a stable state after receiving the server’s asynchronous response.

[image: image2.wmf]Idle

Play

Starting

Error

Paused

<<stop>>/

Stop()

<<start>>/

Start()

STARTED

<<pause>>/

Pause()

<<continue>>/

Continue()

START_FAILED

FINISHED

ERROR

Pausing

PAUSED

Continuing

CONTINUED

FINISHED

Stopping

STOPPED

Figure 2 Playback example FSM client side1

[image: image3.wmf]Idle

Play

Starting

Error

Paused

Start()

[ok]/

^STARTED

Pause()

Continue()

[failed]/

^START_FAILED

[finished]/

^FINISHED

[error]/

^ERROR

Pausing

[paused]/

^PAUSED

Continuing

[continued]/

^CONTINUED

[finished]/

^FINISHED

Stopping

[stopped]/

^STOPPED

Stop()

Figure 3 Playback example FSM server side

1.2 Dynamic view

The dynamic interaction between the ESWC and its surrounding components is described in a scenario. A scenario can be illustrated by a sequence diagram or a collaboration diagram. The use cases identified for the whole system lead to several scenarios centered around the ESWC.

Figure 4 shows a representative scenario for a controller (i.c. DUBS) and 6 controlled components.

[image: image4.wmf]DUBS

RDB

HTMS

HDMP

HDDX

RWMX

DDMR

Recording

Active

Active

Active

EndRecording(LastWrittenLsn)

EOS

Idle

Stop

STOPPED

FINISHED

CHUNK_WRITTEN(LastWrittenLsn)

REC_FINISHED

Idle

Idle

Initialized

ERROR(resources)

Finish

ERROR(resources)

ClearBuffer(

hAvFile)

PLAY_CLOSED(

hTitle, hAvFile

)

PLAY_TitleClose(

hTitle

)

Idle

Stop

STOPPED

Waiting

Idle

Archiving

Error

Figure 4 Example scenario (HDD archiving)

1.3 Inventory of problems

The overall state of the ESWC is a cartesian product of the states of the surrounding protocol FSMs. This may easily cause a state space explosion for complex ESWCs, even if some combined states can not occur; moreover, it will cost effort to identify the absent state combinations.

The second problem is that activities can be interrupted. Predefined scenarios need not be executed entirely from beginning till end. Unforeseen stimuli from the UC or a FC may interrupt the scenario at any moment, i.e. at any intermediate state. From the last current state onwards the ESWC must be able to handle any next stimulus. This leads to a situation where many stimuli must be processed correctly in many states.

Thirdly, suppose the ESWC is executing a scenario. In the middle of that scenario the UC puts a request that does not affect the current scenario. The UC would like to have quick response, e.g. for giving feedback about the current status. The UC request can be realised by the execution of 2 scenarios simultaneously. However, the processing might become very complex for maintaining states and handling response stimuli for both scenarios.

Finally, timing with respect to lower level components is more critical than timing with respect to the UC. Shortly, the hardware can’t wait, whereas the user may wait (a few tenths of seconds). Therefore, stimuli from FCs are normally handled with higher priority than stimuli from the UC, even if a UC stimuli was triggered earlier. Also, stimuli from the same surrounding component need not be processed in the chronological order. An expedited command from the UC, like a Stop() command, may overrule an earlier command that has not yet been handled.

The developed methodology is able to cope with the above problems.

2. Transaction mechanism

2.1 Subcomponents

Figure 5 shows the subcomponents of the ESWC, and the run-time elements.

[image: image5.wmf]ESWC

UpperApi

Transaction

Handler

LowerApi

messages

messages

output

stimuli

UC

FCx

output

stimuli

input

stimuli

input

stimuli

Dispatcher

FCCx

libraries

input

stimuli

messages

messages

function

calls

Figure 5 Decomposition of ESWC

The UpperApi implements the interface to the UC. It translates each input stimulus
 into a message, consisting of a command and parameters.

The LowerApi represents the interface to all controlled components. It translates each input stimulus of a controlled component into a message.

The Dispatcher adds some attributes (priority, category) to each message, depending on the command in the message. Then, it puts the message in the appropriate queue.

FCC is the abbreviation of Functional Component Controller . Each FCCx shields the access to its corresponding FCx. The FCCx obeys the client side of the protocol towards the FCx. The added value of the FCCx will be shown later.

The TransactionHandler is the heart of the controller. It starts and continues transactions based on the input messages. The TransactionHandler uses the FCCx components for accessing the Functional Components.

The ESWC has its own thread as indicated in Figure 5. The TransactionHandler and all FCCx components execute in this thread. The 3 other sub-components execute in other calling threads. The messages in the queues can be passed from the calling threads to the ESWC thread.

2.2 Transaction

A transaction is defined as a unit of work, structured as a sequence of activities that are delimited by numbered intermediate states
. A transaction is derived from a scenario. Figure 6 visualises a transaction.

[image: image6.wmf]source

state

1

2

...

k

target

state

Figure 6 Schematic view of transaction

The characteristics of a transaction are:

· Starts in a source state

· Ends in a target state

· Has numbered, intermediate states

· Executes activities in each intermediate state

· Transitions between subsequent states

· Mostly waits for asynchronous response at end of activity

An Activity Position Counter (APC) is used to indicate the current activity and corresponds with an intermediate state in the transaction. At the start of a transaction APC = 1. Each time an intermediate state is entered the activity for that state is executed. At the end of the activity a condition is checked whether a transition to the subsequent state must be made or not. If no transition is made then the transaction waits for the next input message. At the arrival of a message the complete activity for that state is executed again and the condition is checked again. This may happen several times before a transition is made to the subsequent state. The transaction can be made such that an activity is only executed once by using a condition that is always true.

Normally an activity ends by issuing an asynchronous request. The condition will then check whether the (asynchronous) response is received.

2.3 FCC

The Functional Component Controller (FCC) shields the access to the corresponding Functional Component. The TH can call

The interface offered by the FCCx to the Transaction Handler (TH) is almost the same as the interface by the FCx. The big difference is that the TH need not bother about the protocol restrictions: is it allowed to call this function in this state? The added value of the FCC is that it maintains the client FSM of the protocol to the FC. The FCC has the intelligence to translate the TH calls in an appropriate way. Sometimes, the TH call results in a straightforward call to the corresponding FC. But it is also possible that the FCC does not call an FC function e.g. if the FC is still in a wrong state and firstly a response event must be received.

The behaviour of an FCC can best be explained by an example. Figure 7 shows the server FSM of the FC.

[image: image7.wmf]Idle

Open

Opening

Closing

[failed]/

^FAILED

FcTitleClose()

[closed]/

^CLOSED

[opened]/

^OPENED

FcTitleOpen()

Figure 7 FSM of FC, server side

Figure 8 shows the server FSM of the FCC towards the TH.

[image: image8.wmf]Idle

Open

Opening

Closing

FccResponse(

FAILED)

FccTitleClose() : rv=None/

FcTitleClose()

FccResponse(

CLOSED)

FccResponse(

OPENED)

FccTitleOpen() : rv=None/

FcTitleOpen()

FccTitleOpen() :

rv=None

FccTitleClose() :

rv=None

FccTitleOpen() :

rv=

Opened

FccTitleClose() :

rv=None

FccTitleClose() :

rv=

Clos

ed

Figure 8 FSM of FCC, server side
This trick in the FCC is possible thanks to the repeated execution of the activities in the transaction until the condition is satisfied.

2.4 Transaction Context
A transaction is processed in an environment that is called a Transaction Context (TC). The characteristics of a TC are:

· Maintains a state machine

· Starts a transaction

· Ends a transaction

· Interrupts a transaction, i.e. stop a transaction and start another transaction

· Chain a transaction, i.e. at the end of a transaction another transaction is immediately started

· Updates an FCCx by response events or autonomous events from the FCx

· Allow sub-transaction

2.5 Transaction Handler
The Transaction Handler is the operating environment for the transaction mechanism. The TH is able to handle one or more Transaction Contexts. The objective of the TH is to schedule a TC for processing a message. Each TC has its own set of message queues. The advantages of more than 1 Transaction Context are:

· No task switching overhead

· Enables concurrent scenarios

· No protection (by e.g. semaphores) needed for global data access

Furthermore, a transaction in a TC may send a message to another TC.

Note, that access from many TCs to a single FCC is the responsibility of the designer.

2.6 Overview of stimuli

The stimuli can be subdivided in several categories. The category determined how a stimulus is processed. There is a big difference for the processing of a stimulus depending on the fact whether a transaction is running or not.

	Stimulus
	Source
	No transaction
	Running transaction

	User command
	UC
	EXECUTE
	postponed

	Expected response
	FC

	CONTINUE

	Unexpected response
	FC

	INTERRUPT (?)

	Autonomous event
	FC
	EXECUTE
	INTERRUPT (?)

	Expedited user command
	UC
	EXECUTE
	INTERRUPT (?)

	Information event
	FC
	EXECUTE
	SUB_EXECUTE

	Observer user command
	UC
	EXECUTE
	SUB_EXECUTE

	Internal event
	TC
	EXECUTE
	One of above

The (?) indicates that the stimulus can also be discarded or postponed instead of immediately interrupting the current transaction.

3. Design steps

3.1 Command table

Create a Command Table that shows the conversion from stimulus to command, and the required attributes.

	Stimulus
	Command
	TC
	Category
	FCC

	ESWC_Start
	CMD_ESWC_START
	1
	USER
	-

	ESWC_Stop
	CMD_ESWC_STOP
	1
	EXPEDITED
	-

	ESWC_GetInfo
	CMD_ESWC_GET_INFO
	1
	OBSERVER
	-

	HDDX_EVENT_Started
	CMD_HDDX_STARTED
	1
	EXPECTED
	HDDX

	HDDX_EVENT_StartFailed
	CMD_HDDX_START_FAILED
	1
	UNEXPECTED
	HDDX

	HDDX_EVENT_Error
	CMD_HDDX_ERROR
	1
	AUTONOMOUS
	HDDX

	RWMX_EVENT_SetInfo
	CMD_RWMX_SET_INFO
	1
	INFORMATION
	RWMX

	…
	
	
	
	

3.2 Priority table

For each TC, create a Priority Table with the priority of each command:

	Priority
	Expedited user command
	Autonomous event
	Unexpected response
	Expected response
	Information event
	User command
	Observer user command

	1
	ESWC_

STOP

	
	
	
	
	
	

	2
	
	HDDX_

ERROR,

RWMX_

ERROR
	HDDX_

START_

FAILED
	
	
	
	

	3
	
	
	
	HDDX_

STARTED,

HDDX_

STOPPED,
	RWMX_

INFO
	
	

	4
	
	
	
	
	
	ESWC_

START
	ESWC_

GET_

INFO

· Priority 1 corresponds with the highest priority.

· Commands with the same priority will be stored in the same queue.

· Internal events are assigned to 1 of the 7 categories.

3.3 Transaction table

For each TC, create a Transaction Table that indicates the transaction to be started in a certain state. This table is only valid in case there is no running transaction. The table also indicates if a command can be discarded.

	Command
	State
	Transaction

	ESWC_START
	Idle
	TR_Start

	ESWC_STOP
	any
	TR_Stop

	HDDX_ERROR
	Stopping
	discard

	
	Play
	TR_Error

	
	Error
	discard

	RWMX_INFO
	any
	TR_SetRwmxInfo

	ESWC_GET_INFO
	any
	TR_GetInfo

· The states in the main TC are normally derived from the FSM that describes the server side of the protocol to the UC.

· Response events do not occur in this table because they never start a new transaction.

· Optionally, the above table can be supported by a state machine where the transactions are drawn as sub-states of the table’s states. Figure 9 shows an example FSM.

[image: image9.wmf]Stopping

Play

Starting

Idle

TR_Start

TR_Failed

HDDX_START_

FAILED

ESWC_START

Busy

TR_Finish

TR_Error

RWM_ERROR

HDDX_ERROR

HDDX_FINISHED

[tr_ok]

[tr_ok]

Error

[tr_ok]

TR_Stop

[tr_ok]

ESWC_STOP

[tr_ok]

Figure 9 Example FSM of Transaction Context

3.4 Dispatch table

For each TC, create a Dispatch Table indicating which commands will be executed during a running transaction. The following table gives an example:

	Transaction priority
	Command priority

	
	1
	2
	3
	4

	1
	--
	--
	(
	--

	2
	(
	--
	(
	--

	3
	(
	(
	(
	--

	4
	(
	(
	(
	--

	5
	(
	(
	(
	(

Legenda:

--
command is postponed

(
command is executed

· The lowest Transaction priority (i.c. 5) means: no running transaction.

· A new transaction gets the priority of the command that started that transaction.

· For a transaction with a certain priority, look up in the row of the table which commands are postponed and which are executed.

· When a command is postponed, then its queue must be closed for dispatching commands until the transaction has ended/stopped.

· A benefit of this table is that a running transaction is not bothered by commands of certain priorities.

3.5 Interrupt table

For each TC, create an Interrupt Table indicating how to handle commands that can be executed during a running transaction according to the Dispatch Table.

	Transaction
	Command

	
	Command-1
	Command-2
	…
	Command-m

	Transaction-1
	==
	=
	
	X

	Transaction-2
	==
	=
	
	--

	…
	
	
	
	

	Transaction-n
	--
	Transaction-k
	
	--

Legenda:

--
command is postponed

X
command is discarded

=
command is already postponed by Dispatch Table

==
command can not occur during transaction

· The commands handled in this table are only commands from categories that are able to interrupt a transaction:

· Unexpected response
· Autonomous event
· Expedited user command
· When a command is postponed, then its queue must be closed for dispatching commands until the transaction has ended/stopped.

3.6 FCC FSMs

The FSMs of the FCC must be designed, as indicated in Section 2.3 .

4. Discussion

The methodology has been used by several components yielding the following statistics:

	Component
	Thread
	Nr of contexts
	Nr of transactions

	RAC
	Recording
	1
	47

	PRM
	Playback
	1
	31

	
	Recording
	1
	45

	DSRC
	Playback
	1
	24

	
	Recording
	1
	24

	DDEC
	Playback
	10
	54

	VDEC
	Playback
	3
	36

	HDDN
	Playback
	5
	98

	
	Recording
	1
	36

[CIESLUK] has made a first version of a design for a software library that supports the Transaction Mechanism Methodology.

Future work is devoted to improving the methodology, making a supporting software library operational, developing a framework template.
5. References

[CIESLUK]
Cieśluk, Przemysław
“Transactions in embedded systems”
Master Thesis, Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics
February 2003.

[SELIC-1]
Selic, Bran
“An Architectural Pattern for Real-Time Control Software”
Proceedings of the 1996 Pattern Languages of Programming and Computing, 1996, pages 1-11.

[SELIC-2]
Selic, Bran and Rumbaugh, Jim
“Using UML for modeling complex real-time systems”
Technical report, ObjecTime, March 11, 1998

� This FSM does not show the self-transitions and race conditions to avoid a cluttered figure. Self-transitions and ignored stimuli (for solving race conditions) must be listed in additional tables.

� Communication between components in the PDSL storage projects is based on a proprietary mechanism. Communication from a higher-level component to a lower-level component is done by a normal function call. Communication from a lower-level component to a higher-level component or between equal-level components is done by raising an event. A component subscribed to an event has registered a callback-function that is executed when the event is raised. Hence the input stimuli are functions and callback-functions.

� This definition differs from the definition in the database world, refer to [CIESLUK].

Page 3/17

[image: image10.bmp]_1159711526.unknown

_1159868313.unknown

_1159868314.unknown

_1159868312.unknown

_1159868311.unknown

_1159711522.unknown

_1159711525.unknown

_1159711521.unknown

_1159711520.unknown

