	
	

Recommendations about TDD, A traditional point of view
l

	Recommendations about TDD

	A traditional point of view

	Version 0.1

	2006-11-24

	

	Tis Veugen

	

Document change history
	Version
	Date
	Author
	Reason

	0.1
	2006-11-24
	Tis Veugen
	Initial version

TABLE OF CONTENTS
41. Introduction

1.1 Purpose
4
1.2 Management summary
4
1.3 References
4
2. Analysis
6
2.1 TDD basics
6
2.2 Waterfall model
7
2.3 Granularity
7
2.4 Development environment
7
2.5 SCS
8
2.6 SCD
8
2.7 Testing
9
2.8 Source code
10
2.9 Planning
10
2.10 Reuse
10
2.11 Skills
10
2.12 TDD activities
10
3. Way-of-Working
11
3.1 Life cycle
11
3.2 Alternative approach
11

1. Introduction

1.1 Purpose

This report has been written in order to contribute to a personal bonus target at Philips Applied Technologies (abbreviated as AppTech). My colleague Nikola Gidalov has been assigned the same bonus target. The intention is to highlight TDD from 2 different backgrounds: a traditional point of view (by me) versus a non-traditional point of view (by Nikola). We have no common agreement about the deployment of TDD. Nikola is very positive about TDD (see [Gidalov]), and I have severe reservations with respect to deploying TDD. For this reason, we both write separate reports.

Chapter 2 contains a detailed analysis of several software engineering aspects in relation to TDD.

Chapter 3 addresses the life cycle of the current way-of-working, and proposes an alternative approach to TDD.

Below in Section 1.2 a condensed summary is presented of conclusions and recommendations.

1.2 Management summary

Conclusions:

· TDD is a software development method with a rapid feedback cycle based on tests that are defined before programming.

· The theoretical background, the benefits, and the rationales of the TDD method are unclear. Advocates of TDD misinterpret the sparse theory, and so propagate misleading information.

· Deploying TDD has negative effects on specifications, design, coding, testing, planning, reuse.

· Integrating TDD in the way-of-working of a CMM level 3 organisation, i.c. Apptech, is not advisable.

· TDD might be deployed successfully by inexperienced software developers writing simple software in a CMM level 1 organisation.

· Applying TDD only in the Programming phase of a software life cycle is an option that depends heavily on the personal preferences of a software developer. The negative aspects inherent to TDD still have to be considered critically.

Recommendations:

· It is highly recommended that the Apptech software engineers (and others minding software techniques) enhance their skills in the area of testing.

· It is also recommended that the software developers improve their reviewing skills, in order to prevent unnecessary testing effort.

· Alternative methods are worthwhile to be investigated. Section 3.2 proposes an alternative approach based on software reviewing.

1.3 References

[Beck]
“Test-Driven Development – By Example”,
Kent Beck,
Addison-Wesley,
ISBN 0-321-14653-0

[Bracke-1]
“Software Test Strategies”,
Con Bracke,
01-06-2006

[Bracke-2]
“Test approach for Test Driven Development”,
Con Bracke,
17-10-2006

[Gidalov]
“Introducing TDD in AppTech”,
Nikola Gidalov,
2006-09-18,
version 0.9

2. Analysis

This chapter reflects a personal perception about TDD from a traditional point of view. The input for gaining this perception is based on:

· Reading the book [Beck],

· Collecting material from Internet,

· Experiences from colleagues,

· Personal experience during 20 years of developing software in a “traditional way”, mainly according to the incremental waterfall model.

2.1 TDD basics

The book of [Beck] is considered as the standard work of describing the Test-Driven Development method. The TDD method consists of repetitively applying the following steps, also indicated as the “TDD mantra” :

· Red – Write a little test that doesn’t work, and perhaps doesn’t even compile at first.

· Green – Make the test work quickly, committing whatever sins necessary in the process.

· Refactor – Eliminate all of the duplication created in merely getting the test to work.

Before analysing the impact of these steps, I would like to address the theoretical background of TDD. Unfortunately, it is very difficult to obtain a consistent picture about the underlying theory that explains the method and its rationales.

Ron Jeffries states the goal of TDD as “clean code that works”. The word “clean” means that the source code has been cleaned up. This happens each time in the Refactor step, and it seems to be necessary due to the description in the Green step. However, the Refactor step only mentions elimination of duplications. Apparently, non-functional requirements about readability, maintainability, etc. are not taken into account. Secondly, “that works” suggests that there should be no bugs in the source code. Since this is an open door for any software development, I wonder about the explicit motives. [Beck] gives a clue for the solution. He refers to a project where after practicing TDD: “I stopped breaking builds, and people could rely on my software to work. Customers of my system became more positive, too. A new release of the system meant more functionality, not a host of new defects to identify among all of their old favorite bugs.” So, the situation before practicing TDD seems to be rather buggy. Thirdly, the emphasis is purely on source code. No word is said about documentation.

Another aspect taken from [Beck] refers to “managing fear during programming”. The word “fear” is explained as : “this-is-a-hard-problem-and-I-can’t-see-the-end-from-the-beginning”. From this I deduce that there is a lack of structure in the corresponding way-of-working. A software developer starts programming without any problem analysis, without any specifications nor design.

From the above “theory” can be concluded, that the TDD method has been initiated in an environment that can be described as a CMM level 1 organisation. It is very good to practice software process improvement in an attempt to escape from the chaotic level. The point is that adopting such a method in Apptech, being a CMM level 3 organisation, may lead to severely downgrading the already established way-of-working.

Some people hearing from TDD are very enthusiastic. I think that it is caused by 2 main reasons. Firstly, the description of the TDD mantra is very easy to understand. Readers can immediately start practicing the method, believing that all their software engineering problems are solved. Secondly, the benefits of TDD are very vague giving rice to many interpretations. Advocates of TDD exaggerate benefits, and so mislead other people. For example “TDD yields exhaustive code coverage” as if that is synonymous to delivering bug-free code. However, code coverage is a bad criterion among the testing techniques. Another example is “TDD leads to a better design”. Such a statement is made without any reference, proof or whatsoever.

2.2 Waterfall model

At the moment the following phases can be discerned for constructing a software component:

	1.
	Specification phase
	Make an SCS

	2a.
	Global Design phase
	Make an SCD (global part)

	2b.
	Detailed Design phase
	Make an SCD (detailed part)

	3.
	Programming phase
	Program the source code

	4a.
	Test Design phase
	Make an SCTS, including the test cases

	4b.
	Test Execution phase
	Execute the test cases

The above phases are normally executed consecutively, leading to the term waterfall model.

It is unclear which life cycle phases are covered by TDD. It definitively covers the Programming phase. It touches the Detailed Design phase, but that depends heavily on the definition of “Detailed Design”. In the main example of [Beck], the external interface evolves gradually. However, the example is so limited that one can hardly speak of a Specification phase. And, there is certainly no Global Design phase. In fact, the example is so simple that it confuses the objectives of TDD.

The preliminary conclusion is that the applicable phases for TDD are the Programming phase and perhaps the Detailed Design phase. We will indicate below that TDD does not cover the Specification phase nor the (Global) Design phase.

2.3 Granularity

The question is posed: For what kind of products is TDD best suited? Huge products, e.g. a DVD/HDD-recorder, are far too big to just start programming the source code. Instead a software architecture is needed to decompose the system into manageable software components. The sizes of a component can range from 500 LOC up to even 20000 LOC. The realisation of a component is normally done by a single software developer, or sometimes by a pair of software developers. Hence, a component is a suitable work product for applying TDD.

2.4 Development environment

The development environment heavily influences the deployment of TDD. The applications in Apptech are often related to embedded systems or PCs with dedicated hardware boards. However, TDD can be employed very well for PC applications where the development PC can be used as well as target PC. For practical reasons (e.g. equipment costs, delivery time of dedicated hardware development) target systems may not be available for every developer. Still, pieces of portable software can be tested on the host PC. Beware that then an OSAL (Operating System Abstraction Layer) might be needed.

Testing of software on an embedded system requires a huge turnaround time due to downloading the executable image to the target system. This hampers the claimed quick (< 20 seconds) testing cycle.

Also, typical applications at Apptech involve processing of audio, video, imagery and other (measured) signals. Testing of such (real-time) signals can not be done quickly: it may cost several seconds per test. Also the test itself can not easily be realised by simply comparing 2 integer values. Instead, visual/audible inspection might be needed, or a post-processing step with a software package (e.g. Matlab).

2.5 SCS

TDD does not foresee in a phase of a priori creation of a component specification document. Instead the specification is generated on the fly mainly by extracting header information (if available ?!) from functions, types, etc. My major concerns about this approach are:

· No drawings are generated for Context Diagram, Class Diagram, Finite State Machine, etc.

· The external interface is delayed until the component is ready, yielding practical problems for the component’s callers.

· TDD does not stimulate making a helicopter view and thinking well about the component as a whole.

The unit tests from the TDD method are sometimes denoted as “executable specifications”. This sounds impressive, but such “specifications” have the following shortcomings:

· Executing a function in an example scenario with some example parameters can never describe the whole function’s functionality.

· The tests are always incomplete since they are a subset of the test cases of the SCTS; so the “specifications” are also incomplete.

· Test cases are difficult to read: reading them resembles reverse engineering.

TDD leads to constantly redoing the work done already. This is inefficient for the software developer self, and also for colleagues interfacing with the changing component.

In the traditional way of firstly writing an SCS, the developer becomes acquainted with his component. The developer can focus on the high level of specification, and easily make modifications without much rework. The well-thought interfaces can be used by colleagues after approval of the SCS, preferably after reviewing.

2.6 SCD

The development with respect to the SCD suffers the same problems as for the SCS. E.g. no drawings are made for Component Decomposition, Dependency Graph, Process Design, Sequence Diagram, etc.

The point is that components in an embedded real-time system can have a complex nature involving many subcomponents, threads, semaphores, etc. A decent design is necessary for an efficient development process. Starting programming without a solid basis results in a continuous maintenance phase that starts already from the beginning. Maintenance always deteriorates the design and source code. Refactoring is foreseen to update design and source code. But, it still means a lot of rework. Besides, a need for refactoring in a late stage due to aspects, that have not been taken into account from the beginning, can become a bottleneck for the whole component’s development.

Still, some people claim that TDD leads to “better designs”. The question is where such a statement is based on?

TDD does not prescribe an activity for elaborating a (detailed) design. After making a test, you just start coding; and when you encounter a design problem, then you start thinking about this particular problem and solve it by a piece of detailed design. You then continue coding until you encounter the next (detailed) design problem. At each iteration you have the possibility to judge whether all the previous design work was sufficiently good to cope with the last design problem. If not, then (parts of) the current design must be redesigned. The redesign will be an improvement of the current, inadequate design. This trial and error process can be denoted as a learning curve, yielding a situation based on the acquired knowledge.

The drawbacks of the sketched process:

· The (detailed) design has no solid structure due to the lack of developer’s attention. It is not robust to changes on already foreseen functionality. It is always an ad hoc solution.

· A lot of rework must be done at each redesign; the rework must be done for the code, and also for the tests corresponding to the reworked code.

· In TDD, changing a design means programming things in another way. There is no process defined for guaranteeing the quality of a (re)design.

Another topic mentioned above refers to the definition of Detailed Design. The following criterion is used for indicating the difference between Global Design and Detailed Design of a component. The Detailed Design is applicable to (sub)components that are not further decomposed. Aspects covered in the Detailed Design are: data structures, algorithms, format descriptions, etc. Pseudocode (and similar techniques) also belongs to the Detailed Design. However, if the pseudocode has a strong correspondence to the implemented source code, then after the Programming phase it can better be thrown away to prevent maintenance problems!

The need for Detailed Design depends on the complexity of a (sub)component. If a (sub)component is too complex to start implementing it, then some preparations are taken by a designing activity. It should be clear that such an activity is done before programming and not afterwards. From this can be concluded that TDD has nothing to do with Detailed Design but rather with trial-and-error design.

The book [Beck] mentions : “loosely coupled, tightly cohesively components”.

It is very speculative to conclude that such components automatically evolve from the TDD method. Skilled software developers will design such components before starting the Programming phase.

2.7 Testing

The test cases in TDD are meant to provide feedback to the developer about the developed source code. The tests mainly address the normal behaviour of the source code. Such tests do not suffice as full fledged component test, refer to SCTS. There can be a huge difference between those tests and the test cases for performing the component test. Still a separate activity for constructing a unit/component test is needed to address rare or exceptional behaviour.

TDD claims to generate 100% code coverage. But, such a statement does not guarantee that the component has been implemented completely. Boundary tests should be included; repetitions/combinations of functions should be included, etc. Secondly, testing all exceptional situations is hardly to realise due to state space explosion. Furthermore, the pieces of code in an embedded system’s component need not be executed in a deterministic way: tests touching 100% of the source code do not guarantee the correct functionality of a component.

In general the component test cases are black box tests affecting the external interface, both the provided interfaces as well as the required interfaces. The component tests give of course feedback to the developers, but also to the environment: a component passing the component test can be integrated in the rest of the system. The TDD test cases deal also with code fragments that are not part of the component’s external interface. Artificial interfaces must be created to access static / private functions (i.e., functions not exported to the outside world). Testing all internal and external functions may lead to an excessive amount of work:

· the test cases must be programmed and maintained,

· all test cases included in the TDD’s regression tests will be executed in vain when only a small piece of code is changed.

2.8 Source code

Referring again to “clean code that works”, the question is what works? The code will work for the tests included by the developer self. There is no guarantee that these tests are complete (all functionality covered) or sufficient (all boundary values included, etc). So, the source code might equally well be incomplete and/or insufficient.

Furthermore, the refactoring phase prescribes the removal of duplicates. But, the passed tests will not motivate the developers to clean up things. There is a danger that the developer is blinded by the dogmatic approach of executing (simple) tests, either failing or passing. There is no stimulus anymore of writing clean code at once.

2.9 Planning

Planned effort is normally computed in a quantitative way based on an inventory of the functions to be implemented. Early specification of the external interfaces enables deriving a sound planning. Such a planning can be discussed with the funding customers, and it can be used for tracking purpose.

So, the unstructured approach in the TDD method makes constructing a planning very difficult.

2.10 Reuse

Reuse of software is a key technology for improving productivity. The benefits of reuse can only be enjoyed under certain restrictions. Two important restrictions are the availability of decent documentation, and the maintainability of source code.

The problem is that the TDD method does not pay attention to such restrictions. Instead, it focuses on a short-term solution, based on tests to be passed.

2.11 Skills

Kent Beck learned this method to his 12 year old daughter, and he is very proud about its “success”. This strenghtens me in my opinion that TDD is a childish approach for developing software. Basically, the TDD method is suitable for people who want to write a software program, but who have no idea how to do it. Since those people make lots of mistakes, it is wise to have quick feedback from executed tests. This may work for inexperienced people. But, it does not hold for experienced software developers.

The domain of software development provides dozens of methods, techniques, and tools. Often, the way-of-working for a software developer is very personal depending on education, skills, experiences, etc. Based on experience and personal best practices a selection is made among the best methods. An experienced software developer knows why certain methods must be chosen depending on the circumstances. What selected methods have in common is that a process of stepwise refinement is followed. The last creative step of programming is then merely a fill-in exercise thanks to the learning curve built up at previous development steps.

2.12 TDD activities

A TDD cycle contains many different activities (editing, compiling/linking, executing, inspecting, designing). Constantly switching between these activities is an inefficient process.

The TDD activities are very PC intensive. So, the TDD method will not be popular among people suffering RSI complaints. And also, there is an increased chance that this method will cause new RSI victims.

3. Way-of-Working

3.1 Life cycle

Depending on the increments (or milestones) in a project, a component can be developed in an incremental way. This refinement in the waterfall model is already applied successfully for many years.

The Specification phase is needed to document the component’s functionality and the external interface. Optionally, the specifications are elaborated only for the current increment.

The Global Design phase is needed to describe the main static and dynamic structures of the software to be implemented. Preferably, functionality of future increments is already taken into account to prevent major redesigns.

The Detailed Design phase should be handled with care. The reason is that for complex components relevant aspects should be designed sufficiently during this phase. On the other hand, for small components this phase could simply be skipped! Also, refer to Section 2.6.

After the Programming phase, the component must always be tested in a Testing phase. Optionally, the Test Design phase could be moved just after finishing the SCS. [Bracke-1] and [Bracke-2] revived this idea as a consequence of studying TDD. Two main reasons are :

· The SCTS can be used as feedback to the SCS, so that possible specification flaws can be detected earlier.

· The defined test cases stimulate executing them at an early moment, e.g., as soon as a part of the source code is ready.

Furthermore, [Bracke-1] and [Bracke-2] state that test engineers should be employed to create or review the SCTS, because the skills of test engineers differ from those of software developers.

The test discipline is a world on its own in software land. Since testing is one of the key elements of TDD, I would like to mention some observations.

My experience is that the skills of most test engineers are very poor. Software developers prefer to create new components, and they don’t like testing components of other people. Often test engineers are software developers with little experience (just leaving school), that are hired from external companies.

In Apptech, the size of a software project is nowadays so small, that a test team of test engineers is too much overhead. The testing work will be done by the software developers themselves, and preferably by peer developers. Therefore, it is highly recommended to improve the testing know-how of the staffed software developers by means of courses.

Note that such training will aid software developers in making a correct SCS. So making an SCTS immediately after the SCS is then not strictly needed anymore.

Normally, software developers make a whole component, and hence execute all the phases. But for planning reasons the SCTS can easily be made by a peer developer. The additional advantage is hat a peer has another perception of the component.

3.2 Alternative approach

If I understand TDD well, then its essence is to break down the problem of developing a software component into manageable pieces. Unfortunately, TDD applies this simple and straightforward idea in a chaotic way. Below, I would like to elaborate this idea in a structured way along traditional paths.

The device “divide and conquer” can be applied at many levels of building a software system. The architecture partitions the whole system in subsystems and/or layers. Subsystems are divided into component groups and finally into components.

A component is given to a software developer who continues the dividing strategy. In the global design, the component is decomposed recursively into subcomponents. The subcomponents contain one or more objects, being the instances of classes
. The classes are made up of data and functions. The functions can be high-level functions, that call lower-level functions. Finally, the size of functions is only a (few) dozen lines of source code. This size should be so small that the developer can easily oversee the working of that function.

The functionality of a programmed function should then be fully clear. Optionally, the function is documented including parameters, return values, preconditions, etc. The developer must then immediately review the source code of this function. I consider this step as an efficient alternative compared to writing several test cases for testing that function.

After writing all source code for the (increment of the) component, the developer must self review the whole component. The focus must then be given to cross-references between functions, classes, subcomponents, and also to cross-relations between source code on the one hand and specification/design on the other hand. Finally, of course, the component test must be executed.

Depending on the complexity of the component, support of (design) models and tools are needed. Preferably, state-of-the-art modeling tools are used that synchronise models and source code.

� This terminology can be used for object oriented programming languages as well as for non-OO languages.

Page 3/12

[image: image1.bmp]