	
	

Client - Server Patterns in storage projects, STYLEREF DocSubtitle * MERGEFORMAT
l

	Client - Server Patterns in storage projects

	

	Version 1.1

	2006-03-07

	

	Tis Veugen

	

Document change history
	Version
	Date
	Author
	Reason

	0.1
	2004-08-26
	Tis Veugen
	Initial version derived from previewed memo

	0.2
	2004-11-01
	Tis Veugen
	Reworked version after review

	1.0
	2004-11-15
	Tis Veugen
	Approved version

	1.1
	2006-03-07
	Tis Veugen
	Updated a few mistakes

	
	
	
	

TABLE OF CONTENTS
41. Introduction

1.1 Purpose & scope
4
1.2 Open points
4
1.3 Definitions, acronyms & abbreviations
4
1.4 References
4
2. History
6
3. Terminology
7
4. RTA-pattern
8
4.1 FSM
8
4.2 Characteristics
9
5. DVD-pattern
12
5.1 FSM
12
5.2 Characteristics
13
6. OLAX-pattern
15
6.1 FSM
15
6.2 Characteristics
16
7. Examples
19
7.1 RTA pattern
19
7.1.1 Client side
19
7.1.2 Server side
20
7.1.3 Race condition scenarios
21
7.2 DVD pattern applying synchronous functions
23
7.2.1 Client side
23
7.2.2 Server side
24
7.2.3 Race condition scenarios
25
7.3 DVD pattern applying asynchronous functions - 1
26
7.3.1 Client side
26
7.3.2 Server side
27
7.3.3 Race condition scenarios
27
7.4 DVD pattern applying asynchronous functions - 2
29
7.4.1 Client side
29
7.4.2 Server side
30
7.4.3 Race condition scenarios
30
7.5 OLAX pattern
32
7.5.1 Client side
32
7.5.2 Server side
33
7.5.3 Race condition scenarios
34
8. Overview
36
9. Appendix: categories of states
37

1. Introduction

This document gives an overview of the client – server patterns used in the storage projects at Philips Applied Technologies for developing DVD players, DVD recorders, etc. The treated patterns were designed in the course of these projects.

This document replaces the Sections 3 , 3.1 , 3.2 , 3.3 , 3.4 of [RW2_RULES, version 0.4] .

1.1 Purpose & scope

This document is helpful to software (maintenance) developers for applying and/or understanding one of the patterns. The appendix addresses categories of states that might be helpful in designing FSMs.

The document is also helpful to software architects for selecting and improving client – server patterns.
1.2 Open points

None

1.3 Definitions, acronyms & abbreviations

All definitions, acronyms, and abbreviations not specified here can be found in [RW1_GLOSSARY] or [RW2_GLOSSARY] or [OLAX22_GLOSSARY].

Definitions:

Acronyms:

Abbreviations:

FSM
Finite State Machine

STD
State Transition Diagram

1.4 References

[RW1_GLOSSARY]
DVD+RW

Standards, Methods and Tools

Project Glossary

AR6-805035GHM C05S7

[RW1_SPS_RTA_STREAMING]
DVD Video Recorder

Requirements Specification

SPS of the RTA Streaming Pattern

AR6-805035JB C06S25

[RW2_GLOSSARY]
DVD+RW Generation 2

Standards, Methods and Tools

Project Glossary

AR6-106022 C05S3

[RW2_RULES]
DVD+RW Generation 2

Transitory Information

Some Software Rules and Guidelines

AR6-106022 C04S13

[RW2_STREAMING_A]
DVD+RW Generation 2

Design Descriptions

Streaming Layer Architecture

AR6-106022 C07S2

[RW2_SW_A]
DVD+RW Generation 2

Design Descriptions

Software Architecture

AR6-106022 C07S1

[RW2_SVL_IFACE_MGMT_A]
DVD+RW Generation 2

Design Descriptions

Service Layer Interface Management Architecture

AR6-106022 C07S00248

[OLAX22_GLOSSARY]
OLAX22

Standards, Methods and Tools

Project Glossary

DSE-205018 C05S3

2. History

The RTA-pattern was designed in the first generation DVD-recorder project. The name RTA refers to the subsystem that was newly developed for the streaming and editing of recorded titles. The base document is [RW1_SPS_RTA_STREAMING] describing the concepts of a streaming pipeline controlled by a controller component. A streaming pipeline consists of a source filter, adapter filters, and a sink filter. The API interfaces between the 3 types of filters and the pipeline controller are described as a pattern. Each of the 3 APIs is based on asynchronous functions. In this context, it means that the function call returns, but the activity of the function has not completed yet. A response event raised by a server (i.c. filter) informs a client about the completion of the activity.

In the second generation DVD-recorder project, phase 1, the filter concept was elaborated resulting in filters in a Streaming Layer, see [RW2_STREAMING_A]. The new filters replace the old streaming components. The APIs of these new filters differ from the interfaces that the old streaming components offered to the client services in the legacy service layer. The wrapper components in a thin glue layer (see [RW2_SW_A]) translate the function calls of the legacy services to the old streaming components into function calls to the new filters. The intention was to adopt the RTA pattern for the filters. However, it is problematic to wrap a synchronous
 function in a former streaming component onto an asynchronous functions of a new filter. For a function like the Stop() function the problem could be solved by waiting in the glue layer exclusively for the response event (i.c. STOPPED) of the filter’s asynchronous Stop() function. For other asynchronous functions of a filter another approach was designed to be robust against race conditions, namely blocking of a new function call as long as a current asynchronous function is still executing. The name, DVD-pattern, stems from the fact that the approach was especially designed on behalf of the legacy software of the first generation DVD-players.

So, the new streaming layer filters can be controlled according to the RTA-pattern by future services. And, the new filters can also be used by the legacy DVD software.

It is not the goal of this document to address the specification of the streaming layer filters. The goal is to investigate the patterns themselves.

Another pattern, named OLAX pattern applied in the OLAX project, has been added because it fits in the domain of describing client server interaction. The pattern has been applied in several SAPI specifications and in several interface specifications of Service components. Due to the reuse of the layout of the specification documents the pattern has become a defacto standard throughout the OLAX project. This pattern can be seen as an evolution based on existing DVD-pattern and RTA-pattern experience. One starting point was to only specify the server STD. Another starting point was to include the minimum set of all necessary states. The pattern was originally designed for robust SAPI specifications, and in the mean time it is also used in several Service specifications.

3. Terminology

· The communication protocol is between a client and a server. The client calls a function of the server’s API. The server processes the call and possibly raises a response event when the processing is completed. Both client and server are components.

· The components, relevant for the pattern investigations in this document, have an implementation consisting of a front-end and a back-end. The front-end provides the API, i.e. a collection of functions and events. These functions are executed on the thread of the caller. The back-end performs the real processing on a thread of its own. Typically, a function in the front-end posts an internal message in a queue (or any other interprocess communication means) that is then processed by the back-end. The back-end raises a response event when the processing is completed.

· The server will perform error checking. The error checking includes a check of the arguments of the API call and of the current state of the server side (i.e. whether the call is allowed in the current state of the protocol).

· The API can contain various different flavours of functions. The functions can be subdivided according several categories:

· State dependency (referring to FSM state, not state of variables)

· Functions that influence the state by causing a state change

· Functions that do not influence the state but that may only be called in a certain subset of states

· Functions that are fully state independent

· Execution, referring to the thread in which the function’s activity is executed.

· Functions in front-end, in thread of client

· Functions in back-end, in thread of server.

· Callback functions, in thread of a lower level component controlled by the server or an equal level component communicating with the server.

· Synchronism

· A synchronous functions returns after the whole function’s activity has completed. Optionally, the synchronous function is immediately followed by a response event.
· An asynchronous functions returns before the whole function’s activity has completed. A response event is raised after the remaining part of function’s activity has completed. In general, synchronous functions are used for short activities and asynchronous functions are used for long activities.
· Priority

· Expedited functions: an expedited function overrules/interrupts the current function
· Normal functions

· Data access

· Transformer functions, changing data

· Observer functions, only retrieving data values

· Dependency

· Sequential functions, that must be processed in a strict order, especially functions influencing the state of an FSM.

· Parallel functions, that can be called during processing of other functions.

In this document, the emphasis is on the state influencing functions.

· The server can autonomously change state due to internal triggers, caused by its own processing or by events received from controlled components. The server will always inform its client about this state change by raising an autonomous event such as error event, finished event, autopaused event, etc. A race condition happens when the client makes a function call to the server based on the previous state of the server. The client does this because it has not yet handled the autonomous event.

4. RTA-pattern

4.1 FSM

Figure 1, Figure 2 and Figure 3 illustrate the mechanism of the RTA pattern.

[image: image1.wmf]S1

S2

S3

<<F1>>/

F1()

<<F2>>/

F2()

S1.5

S2.5

F2_DONE

F1_DONE

Figure 1 FSM for the mechanism of the RTA pattern – client side

[image: image2.wmf]S1

S2

S3

F2() / ^F2_DONE

F1() / ^F1_DONE

Figure 2 FSM for the mechanism of the RTA pattern – server side

[image: image3.wmf]Client

Server

FrontEnd

Server

BackEnd

F1()

post

message 1

S1

S1

ERR_OK

get + check

message 1

process

message 1

F2()

post

message 2

ERR_OK

F1_DONE

S1.5

S2

S2

get + check

message 2

etcetera

S2.5

Figure 3 Scenario for the mechanism of the RTA pattern

4.2 Characteristics

1. The protocol between client and server is specified by a pair of Finite State Machines (FSMs).

2. The FSMs explicitly specify race conditions.

3. The client triggers a state transition in the server by an asynchronous function call. In the client FSM for each asynchronous function a state is modeled to wait for the response event of the server. The server raises a response event to the client after completing the activity for the asynchronous function. The client waits for the response event in order to know the result of the asynchronous function’s activity. In this way synchronisation between client and server is guaranteed.

4. The call of an asynchronous function returns immediately. The server does no state checking in its front-end.

5. The server checks in its front-end the parameters of a (asynchronous) function. If some parameter is invalid, then ERR_INVALID_PARAM is returned. The latter should only occur during development.

6. If the server’s front-end returns an errorcode different from ERR_OK, then the server state is not affected. Also, if the server’s front-end returns an errorcode equal to ERR_OK, then the server state is not immediately affected, but possibly after completing its processing.

7. The server puts a command corresponding with the asynchronous function in one of its queues towards the back-end task. The pattern does not prescribe how to handle queue overflow. Possible solutions are:

· Return errcode ERR_BUSY

· Generate an assert

· Block the call until there is room in the queue

8. If the server detects an error situation, it sends an ERROR event and goes to an Error state. The client must call a Stop() function to bring the server back to a useful state, mostly the Idle state. The server discards all asynchronous functions differing from the Stop() function: it does not send corresponding response events.

9. Starting a server is considered a crucial operation where many things can go wrong: lack of resources, failing underlying hardware, absence of valid input signals, etc. For this reason, a Starting state is explicitly modeled in the server’s FSM, refer to [RW1_SPS_RTA_STREAMING] and to the example in Figure 11 and Figure 12 . This intermediate state allows the 2 different results of the start activity
 :

· If the start succeeds then the STARTED event is raised and server and client switch to the Active state.

· If the start fails then the START_FAILED event is raised and server and client switch to the Idle state. The intermediate Starting state enables both server and client to transition to the Idle state. It prevents that in case of a failure the server has to enter an Error state while it has not even been started successfully.

10. The client does not know when the server starts processing a queued command. So, the client can not be aware of the server making an atomic transition (i.c. F1()/^F1_DONE).

11. The server remains in the source state when handling a queued command and processing the corresponding function’s activity. The server exploits this for solving race conditions. The server’s back-end can start processing a function without the client knowing it. When a race happens then the server can raise an autonomous event for that race in the source state without the need to raise that function’s response event. This behaviour has to be kept in mind when interpreting the transitions of the server’s FSM because it deviates from the UML rules. When the function (i.c. F1()) returns successfully, not necessarily the action (i.c. ^F1_DONE) will be performed. The transition should be read as: if the server’s backend has processed the activity of the function (i.c. F1()) completely, then the action of the transition (i.c. ^F1_DONE) will be performed. The client’s FSM does not expose this interpretation problem.

12. After completing a function’s activity, the server firstly raises a response event and then makes a state transition to the new state. This order is intuitively logical from a conceptual, specifying point of view; the state transition (activities plus state switch) is an atomic, infinitely fast operation. However, from an execution point of view there is a delay between raising an event and switching to a new state. Due to a possible task switch where a client task has a higher priority than a server task a state consistency problem can occur. The client thinks that a state transition has already been completed due to the received response event, but the server’s state switch has not yet been executed. An invalid state situation happens when the client calls a normal function that depends on the server’s state and that is handled completely in the server’s front-end (running in the client’s task context) to prevent a task switch. The cause of the problem is the specification/implementation in which the shared variable representing the server state is maintained in the back-end but accessed in the front-end. There are many solutions to this problem. A robust (and preferred) solution would be to handle always a state dependent function in the back-end. A simple (but not preferred) solution would be to firstly switch the server’s state and afterwards raise the response event
.

13. A similar order problem as in the previous remark holds for autonomous events that cause a state switch in the server.

14. The client violates the protocol if it calls already a new asynchronous function before the activity of the current function has completed. The command of the new function remains in a queue until the back-end removes it from the queue for processing. At the moment of the function call the state might be invalid, but the server does not check it. At the moment of processing the new function in the server’s back-end the state might be correct so that there is no need for reporting an invalid state.

So, due to the late state checking a protocol violation might remain hidden for the client’s developer.

15. The client can call a new asynchronous function with expedited status before the activity of the current asynchronous function has completed, e.g. a Stop() function. The intention is to interrupt the processing of the current function’s activity, and to force the server to immediately process the expedited function. The server need not to raise a response event for the current, interrupted function. Note that if also other functions were called before the expedited function, then the server must discard all those functions without raising response events for them. The reason for discarding the functions is that the server must maintain the logical order of client calls.

16. If the client calls a function in an invalid state, then the protocol is violated due to a bug in the client. The server remains in the current state. This situation should only occur during development. The pattern does not prescribe what to do. Possible actions are:

· Generate an assert

· Print debug information

· Notify the client by an event

17. If the server raises an event in an invalid state, then the protocol is violated due to a bug in the server. The client remains in the current state. This situation should only occur during development. Possible actions are:

· Generate an assert

· Print debug information

18. The FSMs of the client side and the server side have a tight relationship. The actions of one FSM are the triggers for the other one and vice versa. One of the benefits of specifying both FSMs is to address race conditions at a single document.
 The race conditions between client and server are caused by autonomous state transitions in the back-end (that are notified to the client by autonomous events raised by the server).

5. DVD-pattern

5.1 FSM

Figure 4 and Figure 5 illustrate the mechanism of the DVD pattern.

[image: image4.wmf]S1

S2

S3

F2() / ^F2_DONE

F1() / ^F1_DONE

Figure 4 FSM for the mechanism of the DVD pattern

[image: image5.wmf]Client

Server

FrontEnd

Server

BackEnd

F1()

S1

post message 1

P(S)

get + check

message 1

V(S)

process message 1

S1.5

S2

F1_DONE

error code

F2()

post message 2

get + check

 message 2

P(S)

error code

V(S)

S2.5

etcetera

Figure 5 Scenario for the mechanism of the DVD pattern (applying asynchronous functions)
Note that in this scenario the response event F1_DONE is drawn after the state change to S2. This rule in the DVD pattern to draw scenarios in this way has the intention to force developers to implement a transition such that firstly the state variable is changed and secondly the response event is raised. The historical background is as follows:

Once, a server raised an event before the state was changed. The client having a higher priority than the server (a doubtful execution architecture !) was scheduled for processing. The client called a function of that same server, and this function was executed in the server’s front-end instead of the server’s back-end. The state in the server’s back-end (a variable shared between 2 threads !) was checked without any protection mechanism, and the check failed.

5.2 Characteristics

1. The pattern applies two types of functions: synchronous functions and asynchronous functions.

2. The protocol specification indicates if a function is synchronous or asynchronous.

3. The error check uses the server’s state, that is maintained in the server’s back-end. Therefore the check is best performed at the back-end of the server. This implies a context switch for every API call, regardless of the priorities of the threads of client and server. In many cases, the server thread will have a higher priority than the client thread, so the context switch would happen anyway when the internal message is posted.

4. When a function returns then the server has performed state checking. If the function is called in a wrong state, then the return value is ERR_INVALID_STATE.

5. The server checks in its front-end the parameters of an (a)synchronous function. If some parameter is invalid, then ERR_INVALID_PARAM is returned. The latter should only occur during development.

6. If the server’s front-end returns an errorcode different from ERR_OK, then the server’s back-end does not raise the corresponding response event, and it will not transition to the target state: the server remains in its source state. Due to the error situation, the server might transition to another state and raise an appropriate autonomous event.

7. If a client calls a new function, whereas the server is processing a current function, then the new function is blocked (e.g. by a semaphore). The new function is unblocked after the server has completed the processing of the current function.
If a client calls a synchronous function, then this client can’t call another function because it simply has to wait until the function returns. Another client would be blocked when it calls a function to the server.
If a client calls an asynchronous function, and that function returns ERR_OK, then this client can call another function. The client is then blocked. Note that this usage is not recommended because of race conditions.
Hence, the client can use the server by 2 styles:

· waiting for response events (the RTA style)

· not waiting for response events, but getting blocked

8. The protocol between client and server is specified by a single Finite State Machine (FSM) representing the state of the server.

9. The FSM does not explicitly specify race conditions for the client side.

10. The server puts a command corresponding with the (a)synchronous function in one of its queues towards the back-end task
. The pattern does not prescribe how to handle queue overflow. Despite blocking of a client at every second function call, there is still a possibility of queue overflow, namely when there is an unlimited number of clients.
 The server could also block a function call at entering its front-end by an extra semaphore, that would hence block each second call before posting a message.

11. If the server detects an error situation, it send an ERROR event and goes to an Error state. The client must call a Stop() function to bring the server back to a useful state, mostly the Idle state. The server returns ERR_ERROR_STATE for all functions differing from the Stop() function.

12. After completing a synchronous function’s activity, the logical order is (also see RTA-12):
(a) unblock the function
(b) raise the response event
(c) switch the state
From an execution point of view the preferred order would be:
(a) switch the state
(b) raise the response event
(c) unblock the function
The order between (b) and (c) is not that essential. The order above has the advantage that the client knows that the response event is always raised (note that this knowledge should be specified then by the server).
A similar remark holds for an asynchronous function when the server has completed the function’s activity.

13. The pattern supports functions with expedited status that are not blocked by preceding calls. The Stop() function is a typical example that interrupts any previous function call.

14. The client’s view on the FSM is that after a successful state check the target state (S2) has been reached, although the response event has not been raised yet. The premature state transition (to S2) justifies that the client can make another call (F2()), that is valid according to the FSM. The client will be blocked.
The server’s back-end implements a state machine that extends the specified FSM with hidden states. After a successful state check the back-end processes the function’s activity in a hidden state (S1.5), that can be considered as being inside the target state (S2). When the processing is completed the state transition from the hidden state to the real target state is realised, and the response event is raised.

15. During processing in a hidden state (S1.5) the server might observe an error situation. There are roughly 2 scenarios to cope with this. The pattern does not prescribe a certain scenario: the server’s specification will describe it.
(a) the server completes the transition (i.e. raises the response event and changes to the target state), and then immediately changes to the Error state and raises the autonomous ERROR event. For a very short moment the server will be in an wrong state (see for example Figure 22).
(b) the server breaks the transition: it does not raise the response event nor does it change to the target state. Instead, it changes to the Error state and raises the autonomous ERROR event. Note that this scenario is not in accordance with the UML notation (just as in the RTA pattern, [RTA-11]): if a trigger has been accepted (i.c. F1() returned ERR_OK), then the state should be changed and the activity should be executed. The client must be aware of the race situations where the transition need not take place although the function (i.c. F1()) has been called in a correct state, as confirmed by ERR_OK. Furthermore, according to the pattern the client can already make calls based on the target state, but the client must still be prepared to receive autonomous events (differing from the response event) coming from the source state..
For both above scenarios holds that a blocked function will be processed in the Error state resulting in return value ERR_ERROR_STATE.
The above behaviour also applies for other than error situations, e.g. the FINISHED event leading (mostly) to the Idle state. In that case, a blocked function will result in return value ERR_INVALID_STATE.

6. OLAX-pattern

6.1 FSM

Figure 6 , Figure 7 and Figure 8 illustrate the mechanism of the OLAX pattern.

[image: image6.wmf]S1

S2

S3

<<F1>>/

F1()

<<F2>>/

F2()

S1.5

S2.5

F2_DONE

F1_DONE

Figure 6 FSM for the mechanism of the OLAX pattern – client side

[image: image7.wmf]S1

S2

S3

F1()

F2()

S1.5

S2.5

[done]/

^F2_DONE

[done]/

^F1_DONE

Figure 7 FSM for the mechanism of the OLAX pattern – server side

[image: image8.wmf]Client

Server

FrontEnd

Server

BackEnd

F1()

S1

post message 1

P(S)

get + check

message 1

V(S)

process message 1

S1.5

S2

F1_DONE

error code

etcetera

S1

S1.5

S2

F2()

post message 2

get + check

message 2

Figure 8 Scenario for the mechanism of the OLAX pattern

6.2 Characteristics

1. The protocol between client and server is specified by a single FSM representing the server side. The FSM can be used as well for the client side! This is made possible because the FSM contains all transitory states that are normally only modeled for a client FSM, and it contains states due to autonomous events (e.g. Error) that are normally only modeled for a server FSM. The transitions for the server FSM and the client FSM are different. Still, the FSM can be easily applied for the client side thanks to the duality in triggers and actions:

	Client FSM
	Server FSM

	<<external trigger>> / function call
	function call

	event
	[condition] / ^event

2. The FSM is accompanied by 2 tables for handling race conditions. The first table on behalf of the server gives an overview of all functions per state. For each combination of function versus state there are 4 possibilities:
a) the function call is made in a valid state of the server: the server returns ERR_OK .
b) the function call is made in an invalid state of the server due to a race condition: the server returns ERR_OK, and does not process the function. The server has informed the client about the autonomous state change by raising an autonomous event. The client should understand from the autonomous event that a race condition occurred. The client knows then that it will not receive the expected response event anymore, and it should handle accordingly.
c) the function call is made in an error state of the server: the server returns ERR_ERROR_STATE or ERR_OK (if the situation is considered as a race condition), and does not process the function
d) the function call is made in a wrong state of the server due to a bug in the client: the server returns ERR_INVALID_STATE, and does not process the function (this should only occur during development)
The second table on behalf of the client gives an overview of all events per state. For each combination of event versus state there are 3 possibilities:
a) the event is received in a valid state of the client
b) the event is received in an invalid state of the client due to a race condition: the client ignores the event
c) the event is received in a wrong state of the client due to a bug in the server: the client ignores or asserts the event (this should only occur during development)

3. The pattern uses asynchronous functions. The client calls a function and waits in a transitory state. When the server starts processing a function it transitions to the equivalent transitory state. After processing the function’s activity the server raises a response event and transitions to a new state. The client receives the response event and also transitions to a new state, being equal to the server’s state.

4. The state check for an asynchronous function is done in the server’s back-end. The client is blocked (by SemP) in the server’s front-end, until the back-end has started processing the function’s activity: the back-end checks the state, unblocks (by SemV) the front-end, and executes the function’s main activity.

5. The server checks in its front-end the parameters of a (asynchronous) function. If some parameter is invalid, then ERR_INVALID_PARAM is returned. The latter should only occur during development.

6. If the server returns an errorcode different from ERR_OK, then the server state is not affected.

7. The server puts a command corresponding with the asynchronous function in one of its queues towards the back-end task. If a queue has an overflow then the server returns ERR_BUSY.

8. If the server detects an error situation, it sends an ERROR event and goes to an Error state. The client must call a Stop() function to bring the server back to a useful state, mostly the Idle state. The server discards all functions differing from the Stop() function: it does not send corresponding response events.

9. The remark RTA-15 also apply for the OLAX pattern.

10. A race condition can occur if a state has both a trigger to leave the state due to a function call by the client, as well as an internal trigger to leave the state notified to the client via an autonomous event by the server. The race condition happens if both triggers fire at the same time. Depending on the specification choice of the protocol either the function call has precedence (see Figure 9) or the autonomous event has precedence (Figure 10). In the first case, the client ignores the autonomous event and on behalf of the server there must be a transition with trigger F1() from the server’s new state S3 to the transitory state S1.5. In State S1.5 there may not be a trigger R1_HAPPENED to make a transition to another state. In the second case, the server ignores the function call, and the client knows that it will not receive response event F1_DONE anymore and hence on behalf of the client there must be a transition with trigger R1_HAPPENED to S3. In State S3 there may not be a trigger F1() to make a transition to another state.
The response to function F1() is either its response event F1_DONE or some autonomous event. An exception to this situation happens when an expedited call is made by the client. In that case, the expedited function overrules the current function (i.c. F1()) and also the resulting events (response event F1_DONE or some autonomous event from state S1). The client is only interested in the response event of the expedited function. The response event F1_DONE or the autonomous event R1_HAPPENED need not be raised anymore by the server. But, if one of them is raised then the client ignores it.
If for some other function F2() from S1 to S1.5 there would be no transition from S1.5 to S3 (by trigger F2()) or from S3 to S1.5 (by trigger R1_HAPPENED) then the FSM has a serious mistake.
The statements above can be considered as rules when designing an FSM.

[image: image9.wmf]Client ignores

R1_HAPPENED in

state S1.5

S1

S1.5

S3

<<F1>>/

F1()

F1_DONE

S2

R1_HAPPENED

S1

S1.5

S3

F1()

[done] /

 ^F1_DONE

S2

[race] /

 ^R1_HAPPENED

Client STD

Server STD

F1()

<<F1>>/

F1()

Figure 9 Race condition, precedence to function call

The grayed states show the states at the moment of the race. Both client and server will transition to state S1.5, and finally they land in state S2.

[image: image10.wmf]S1

S1.5

S3

<<F1>>/

F1()

F1_DONE

S2

R1_HAPPENED

R1_HAPPENED

S1

S1.5

S3

F1()

[done] /

 ^F1_DONE

S2

[race] /

 ^R1_HAPPENED

[race] /

 ^R1_HAPPENED

Server ignores

F1() in state S3

Client STD

Server STD

Figure 10 Race condition, precedence to autonomous event

The grayed states show the states at the moment of the race. Finally, both client and server land in state S3 .

7. Examples

A typical real time situation is worked out for the 3 patterns where the DVD pattern is illustrated in 3 manners:

· The DVD pattern applies synchronous functions.

· The DVD pattern applies asynchronous functions, and response events are always raised.

· The DVD pattern applies asynchronous functions, and transitions can be broken so that response events need not be raised.

 The protocols following the RTA pattern or the OLAX pattern are based on asynchronous functions, so that no example can be given using synchronous functions.

For each of the pattern cases, the following items are shown:

1. FSM, consisting of State Transition Diagram (STD) accompanied with tables.

2. Race condition scenario where the race happens before the client function is called.

3. Race condition scenario where the race happens during processing of the client function.

Two race condition scenarios are given to illustrate the difference between them.

7.1 RTA pattern

7.1.1 Client side

[image: image11.wmf]Idle

Play

Starting

Pausing

Continuing

Paused

Stopping

STOPPED

<<start>>/

Start()

STARTED

<<pause>>/

Pause()

PAUSED

CONTINUED

<<continue>>/

Continue()

START_FAILED

FINISHED

FINISHED

<<stop>>/

Stop()

ERROR/

Stop()

Figure 11 Example STD, RTA pattern, client side
	State
	Ignored events

	Stopping
	EVENT_ERROR, EVENT_PAUSED, EVENT_CONTINUED, EVENT_STARTED, EVENT_START_FAILED, EVENT_FINISHED

	Idle
	EVENT_PAUSED(ERR_INVALID_STATE) after EVENT_FINISHED

Table 1 Ignored events, RTA pattern, client side
7.1.2 Server side

[image: image12.wmf]Idle

Play

Starting

Error

Paused

Stop()/

^STOPPED

Start()

[ok]/

^STARTED

Pause()/

^PAUSED

Continue()/

^CONTINUED

[failed]/

^START_FAILED

[finished]/

^FINISHED

[error]/

^ERROR

Figure 12 Example STD , RTA pattern, server side
	State
	Ignored functions

	Error
	Pause(), Continue()

Table 2 Ignored functions, RTA pattern, server side
	State
	Function
	Action

	Idle
	Pause()
	Raise EVENT_PAUSED(ERR_INVALID_STATE)

Table 3 Self transitions, RTA pattern, server side
Note that in the server STD the FINISHED event is raised only from state Play.

7.1.3 Race condition scenarios

[image: image13.wmf]Client

BackEnd

Server

FrontEnd

Server

BackEnd

Pause()

Play

ERR_OK

ignore

Pausing

Idle

Server

CallBack

Client

CallBack

Play

FINISHED

FINISHED

FINISHED

FINISHED

Idle

Pause

PAUSED(invalid state)

PAUSED(invalid state)

Figure 13 Race scenario 1, RTA pattern

[image: image14.wmf]Client

BackEnd

Server

FrontEnd

Server

BackEnd

Pause()

Play

ERR_OK

ignore

Pausing

Idle

Server

CallBack

Client

CallBack

Play

FINISHED

FINISHED

FINISHED

FINISHED

Idle

Pause

PAUSED(invalid state)

PAUSED(invalid state)

Pause()

Figure 14 Race scenario 2, RTA pattern

In scenario 1 the server raises the FINISHED event before the PAUSED event because the server was not yet aware of the Pause() function. In scenario 2 the server can choose since it knows about the race in its back-end. Still, the FINISHED event is raised firstly whereas the server’s back-end is already processing the Pause command. The 2 scenarios are different from a server’s point of view, but they are similar from a client’s point of view. So, it makes sense to keep the behaviour towards the client the same.

7.2 DVD pattern applying synchronous functions

The example given below is a hypothetical example; it is not derived from some existing client – server protocol.

7.2.1 Client side

[image: image15.wmf]Idle

Play

Paused

<<start>>/

Start()

[ok]

<<pause>>/

Pause()

[ok]

[ok]

<<continue>>/

Continue()

[failed]

FINISHED

[finished]

<<stop>>/

Stop()

ERROR/

Stop()

B_Start

B_Pause

[error_state]/

Stop()

[invalid_state]

B_Continue

[error_state]/

Stop()

Figure 15 Example STD, DVD pattern applying synchronous functions, client side

	State
	Ignored events

	Idle
	EVENT_ERROR, EVENT_FINISHED

Table 4 Ignored events, DVD pattern applying synchronous functions, client side
Remarks:

· The [finished] condition leading to a errorcode ERR_FINISHED is optional, also see Figure 18. The alternative is to merge this situation with [invalid state] , return to state Play, and then raise the FINISHED event.

· The client has not subscribed to the response events, only to the autonomous events.

· The client should empty the queue of possible autonomous events when it reaches the state Idle after calling Stop(). Otherwise, in case of calling Start() immediately, the queued events would be handled in the wrong play-session.

7.2.2 Server side

[image: image16.wmf]Idle

Play

Error

Paused

Start()

[ok]/

^STARTED

Pause()

Continue()

[finished]/

^FINISHED

[error]/

^ERROR

[failed]

[ok]/

^PAUSED

B_Continue

[ok]/

^CONTINUED

B_Pause

B_Start

[finished]/

^FINISHED

Stop()/

^STOPPED

Figure 16 Example STD, DVD pattern applying synchronous functions, server side

Remark: In this example, all synchronous functions are followed by response events.

	State
	Function
	Action

	Error
	Pause()
	Return ERR_ERROR_STATE

	Error
	Continue()
	Return ERR_ERROR_STATE

Table 5 Self transitions, DVD pattern applying synchronous functions, server side
7.2.3 Race condition scenarios

[image: image17.wmf]Client

BackEnd

Server

FrontEnd

Server

BackEnd

Pause()

Play

ERR_INVALID_STATE

Idle

Server

CallBack

Client

CallBack

Play

FINISHED

FINISHED

FINISHED

FINISHED

Idle

Pause

invalid state

Client should

interpret this

errorcode as a

race condition !

Figure 17 Race condition 1, DVD pattern applying synchronous functions

[image: image18.wmf]Client

BackEnd

Server

FrontEnd

Server

BackEnd

Pause()

Play

ignore

Idle

Server

CallBack

Client

CallBack

Play

FINISHED

FINISHED

FINISHED

FINISHED

Idle

Pause

Pause()

finished

ERR_FINISHED

Figure 18 Race condition 2, DVD pattern applying synchronous functions

7.3 DVD pattern applying asynchronous functions - 1

The given example is based on the choice in the protocol, that a response event will always be given if a function is called in a correct state. Furthermore, there is no START_FAILED event; instead the ERROR event is raised when the Start() function leads to a fail situation.

7.3.1 Client side

[image: image19.wmf]Idle

Play

Starting

Pausing

Continuing

Paused

Stopping

STOPPED

<<start>>/

Start()

STARTED

<<pause>>/

Pause()

PAUSED

CONTINUED

<<continue>>/

Continue()

FINISHED

<<stop>>/

Stop()

ERROR/

Stop()

B_Pause

[ok]

[invalid_state or

error state]

B_Continue

[error state]

[ok]

Figure 19 Example STD, DVD pattern applying asynchronous functions-1, client side

Remark: The Stop() function is an expedited function.

	State
	Ignored events

	Stopping
	EVENT_ERROR, EVENT_PAUSED, EVENT_CONTINUED, EVENT_STARTED, EVENT_FINISHED

Table 6 Ignored events, DVD pattern applying asynchronous functions-1, client side
7.3.2 Server side

[image: image20.wmf]Idle

Play

Error

Paused

Start()/

^STARTED

[finished]/

^FINISHED

[error]/

^ERROR

Stop()/

^STOPPED

Pause()/

^PAUSED

Continue()/

^CONTINUED

Figure 20 Example STD, DVD pattern applying asynchronous functions-1, server side

	State
	Function
	Action

	Idle
	Pause()
	Return ERR_INVALID_STATE

	Idle
	Continue()
	Return ERR_INVALID_STATE

	Error
	Pause()
	Return ERR_ERROR_STATE

	Error
	Continue()
	Return ERR_ERROR_STATE

Table 7 Self transitions, DVD pattern applying asynchronous functions-1, server side
7.3.3 Race condition scenarios

[image: image21.wmf]Client

BackEnd

Server

FrontEnd

Server

BackEnd

Pause()

Play

ERR_INVALID_STATE

Idle

Server

CallBack

Client

CallBack

Play

FINISHED

FINISHED

FINISHED

FINISHED

Idle

Pause

invalid state

Client should

interpret this

errorcode as a

race condition !

Figure 21 Race condition 1, DVD pattern applying asynchronous functions-1

[image: image22.wmf]Client

BackEnd

Server

FrontEnd

Server

BackEnd

Pause()

Play

Idle

Server

CallBack

Client

CallBack

Play

FINISHED

FINISHED

FINISHED

FINISHED

Idle

Pause

Pause()

ERR_OK

ok

PAUSED

PAUSED

Paused

Client is for a

short while in an

inconsistent state

Figure 22 Race condition 2, DVD pattern applying asynchronous functions-1

When the server’s back-end receives the FINISHED event from lower level controlled components, it knows that the Paused situation can not be realised anymore. The server has already returned ERR_OK for function Pause() so that it must firstly send the PAUSED event, and then the FINISHED event.

When the client is in its (inconsistent) Paused state, it might call a Continue() function causing an invalid state situation. The client should then inspect the possible received autonomous events to detect that the invalid state situation is due to race conditions.

Also when the client is in its Pausing state, then it is allowed according to the DVD pattern to call the Continue() function blocking the client. The server raises the events PAUSED and FINISHED, and returns ERR_INVALID_STATE for the unblocked Continue() function. The client has to inspect the events to explain the invalid state situation.

7.4 DVD pattern applying asynchronous functions - 2

The given example is based on the choice in the protocol, that a transition is broken in case of race conditions or expedited functions. Furthermore, there is no START_FAILED event; instead the ERROR event is raised when the Start() function leads to a fail situation.

7.4.1 Client side

[image: image23.wmf]Idle

Play

Starting

Pausing

Continuing

Paused

Stopping

STOPPED

<<start>>/

Start()

STARTED

<<pause>>/

Pause()

PAUSED

CONTINUED

<<continue>>/

Continue()

FINISHED

<<stop>>/

Stop()

ERROR/

Stop()

B_Pause

[ok]

[invalid_state or

error state]

B_Continue

[error state]

[ok]

Figure 23 Example STD, DVD pattern applying asynchronous functions-2, client side

Remark: The Stop() function is an expedited function.

	State
	Ignored events

	Stopping
	EVENT_ERROR, EVENT_PAUSED, EVENT_CONTINUED, EVENT_STARTED, EVENT_FINISHED

Table 8 Ignored events, DVD pattern applying asynchronous functions-2, client side
7.4.2 Server side

[image: image24.wmf]Idle

Play

Error

Paused

[finished]/

^FINISHED

[error]/

^ERROR

Stop()/

^STOPPED

Pause()/

^PAUSED

Continue()/

^CONTINUED

Start()/

^STARTED

Figure 24 Example STD, DVD pattern applying asynchronous functions-2, server side

	State
	Function
	Action

	Idle
	Pause()
	Return ERR_INVALID_STATE

	Idle
	Continue()
	Return ERR_INVALID_STATE

	Error
	Pause()
	Return ERR_ERROR_STATE

	Error
	Continue()
	Return ERR_ERROR_STATE

Table 9 Self transitions, DVD pattern applying asynchronous functions-2, server side

7.4.3 Race condition scenarios

[image: image25.wmf]Client

BackEnd

Server

FrontEnd

Server

BackEnd

Pause()

Play

ERR_INVALID_STATE

Idle

Server

CallBack

Client

CallBack

Play

FINISHED

FINISHED

FINISHED

FINISHED

Idle

Pause

invalid state

Client should

interpret this

errorcode as a

race condition !

Figure 25 Race condition 1, DVD pattern applying asynchronous functions-2

[image: image26.wmf]Client

BackEnd

Server

FrontEnd

Server

BackEnd

Pause()

Play

Idle

Server

CallBack

Client

CallBack

Play

FINISHED

FINISHED

FINISHED

FINISHED

Idle

Pause

Pause()

ERR_OK

ok

Figure 26 Race condition 2, DVD pattern applying asynchronous functions-2

When the server’s back-end receives the FINISHED event from lower level controlled components, it knows that the Paused situation can not be realised anymore. The server has already returned ERR_OK for function Pause(), but in this variant it may break the transition. So the server does not send the PAUSED event, but it sends only the FINISHED event.

When the client is in its Pausing state, then it is allowed according to the DVD pattern to call the Continue() function blocking the client. The server raises the event FINISHED, and returns ERR_INVALID_STATE for the unblocked Continue() function. The client has to inspect the events to explain the invalid state situation.

7.5 OLAX pattern

7.5.1 Client side

[image: image27.wmf]Idle

Play

Starting

Error

Paused

<<stop>>/

Stop()

<<start>>/

Start()

STARTED

<<pause>>/

Pause()

<<continue>>/

Continue()

START_FAILED

FINISHED

ERROR

Pausing

PAUSED

Continuing

CONTINUED

FINISHED

Stopping

STOPPED

Figure 27 Example STD, OLAX pattern, client side

Remark: As an alternative, the event START_FAILED could be replaced by event ERROR transitioning to the Error state. In that case an extra Stop() is needed to return to Idle.

7.5.2 Server side

[image: image28.wmf]Idle

Play

Starting

Error

Paused

Start()

[ok]/

^STARTED

Pause()

Continue()

[failed]/

^START_FAILED

[finished]/

^FINISHED

[error]/

^ERROR

Pausing

[paused]/

^PAUSED

Continuing

[continued]/

^CONTINUED

[finished]/

^FINISHED

Stopping

[stopped]/

^STOPPED

Stop()

Figure 28 Example STD, OLAX pattern, server side

	
	Idle
	Starting
	Play
	Pausing
	Paused
	Continuing
	Error
	Stopping

	Start()
	(
	
	
	
	
	
	
	

	Stop()
	(
	(
	(
	(
	(
	(
	(
	

	Pause()
	-
	
	(
	
	
	
	-
	

	Continue()
	
	
	
	
	(
	
	-
	

Table 10 Function requests

(
function call is made in valid state of server

-
function call is made in invalid state of server due to race condition: server returns ERR_OK, and does not process the function

Remark: Optionally, a function call made in state Error tagged with ‘-‘ can have return code ERR_ERROR_STATE.

	
	Idle
	Starting
	Play
	Pausing
	Paused
	Continuing
	Error
	Stopping

	STARTED
	
	(
	
	
	
	
	
	-

	START_FAILED
	
	(
	
	
	
	
	
	-

	PAUSED
	
	
	
	(
	
	
	
	-

	CONTINUED
	
	
	
	
	
	(
	
	-

	ERROR
	
	
	(
	(
	(
	(
	
	-

	FINISHED
	
	
	(
	
	(
	
	
	-

	STOPPED
	
	
	
	
	
	
	
	(

Table 11 Events raised

(
event raised in valid state of client

-
event raised in invalid state of client due to race condition: client ignores event

7.5.3 Race condition scenarios

[image: image29.wmf]Client

BackEnd

Server

FrontEnd

Server

BackEnd

Pause()

Play

ERR_OK

ignore

Pausing

Idle

Server

CallBack

Client

CallBack

Play

FINISHED

FINISHED

FINISHED

FINISHED

Idle

Pause

ok

Figure 29 Race condition 1, OLAX pattern

[image: image30.wmf]Client

BackEnd

Server

FrontEnd

Server

BackEnd

Pause()

Play

ERR_OK

Pausing

Idle

Server

CallBack

Client

CallBack

Play

FINISHED

FINISHED

FINISHED

FINISHED

Idle

Pause

Pause()

ok

Pausing

Figure 30 Race condition 2, OLAX pattern

8. Overview

The following table lists advantages (+) and disadvantages (-) of the patterns.

	issue
	RTA
	DVD
	OLAX

	FSM
	+ client FSM and server FSM
	- only server FSM
	+ server FSM that applies for client FSM

	State checking
	+ no task switch needed
	- task switch needed
	- task switch needed

	Protocol violation
	- error via event
- client bugs could remain hidden
	+ error via return value
	+ error via return value

	2nd function call
	+ client never blocked
	- client blocked, except for expedited functions
	- client blocked, except for expedited functions

	Queue full
	- no rule
	+ prevented by blocked client
	+ ERR_BUSY (should also be prevented by blocked client)

	Race conditions
	+ fully described
	- only for server described
	+ fully described
- functions return always ERR_OK, and no response events are raised

	Expedited functions
	+ supported
	+ supported
	+ supported

	Execution
	* (mostly) in source state
	- in target state
	+ in transitory state

Table 12 Overview of issues for the different patterns

N.B. State checking in the back-end is a feature that can be included or not in a pattern. It might be worthwhile to investigate a variant of the OLAX pattern in which no state checking is done in the back-end.

9. Appendix: categories of states

In the OLAX pattern, almost all asynchronous functions are tagged as synchronous. This is very confusing (at least to me and probably also for others). As a consequence, some investigations have been devoted to the modeling of FSMs.

Although an FSM is a simple (and powerful) technique, looking in more detail provides more insight how to model an FSM.

As a starting point, the states in an FSM can be categorised as follows:

Waiting (W) state:
a stable state in which the system has no activity. The system waits for a function call that may cause a transition to another state. It is not possible that a transition is caused by an internal trigger notified by an autonomous event. (Example state: Idle)

Transitory (T) state:
an instable, temporary state for handling an asynchronous event. This state is entered due to an asynchronous function, and is left when completing the processing for that function. The completion is notified by raising the corresponding response event. The state can also be left due to an internal trigger notified by an autonomous event, or due to expedited functions. The system remains in a transitory state for a short moment. (Example state: Pausing)

Processing (P) state:
a stable state in which the system is processing an activity, either based on hardware activity or on software activity. Typically, in these kind of states, autonomous events happen such as FINISHED, etc leading to a state transition. The state can also be left by a function call. (Example state: Play)

Categorising a state depends on the circumstances. A Paused state in a playback component (e.g. DDEC) seems to be a Waiting state. In this Paused state the decoding is paused, but demultiplexing could still be running. If the demultiplexer detects an error, then still the autonomous ERROR event could be raised.

Since errors could always occur due to unforeseen reasons it might be worthwhile to introduce another state category, namely a waiting state where only an autonomous ERROR event can happen.

Applying Transitory states and Processing states is not so straightforward as it seems to be. Figure 31 contains an FSM being a piece of the FSM of a recording component, where a DVD TOC is being authored.

[image: image31.wmf]Stopped

Finalise()

Finalising

[ready]/

^FINALISED

Idle

Figure 31 Finalising, server side FSM, existing view
The Finalising state seems to be a Transitory state. However, it does not obey the definition, because the finalising activity takes a lot of time (dozens of seconds). The alternative FSM is shown in Figure 32:

[image: image32.wmf]W:

Stopped

Finalise()

P:

Finalising

[ready]/

^FINALISED

W:

Idle

T: Finalise

Requesting

[accepted]/

^FINALISING

Figure 32 Finalising, server side FSM, alternative view
The server sends a response event FINALISING to indicate that the actual finalising activity has started successfully. The server will conclude the activity with a FINALISED event (although an error situation might be reported in the event data due to disc write errors).

Based on the above example, it makes sense to extend the Transitory (T) state into 2 states:

TransitoryShort (TS) state:
an instable, temporary state for handling an asynchronous event during a short moment. This state is entered due to an asynchronous function, and is left when completing the processing for that function. (“Processing” could be: accepting the function to be actually handled in a subsequent state.) The completion is notified by raising the corresponding response event. The state can also be left due to an internal trigger notified by an autonomous event, or due to expedited functions. (Example state: Pausing)

TransitoryLong (TL) state:
an instable, temporary state for handling an asynchronous event during a long moment. This state is entered due to an asynchronous function, and is left when completing the processing for that function. The completion is notified by raising the corresponding response event. The state can also be left due to an internal trigger notified by an autonomous event, or due to expedited functions. (Example state:Finalising)

A TransitoryLong state can always be replaced by a sequence of TransitoryShort state plus Processing state. In fact the TransitoryLong state is a shorthand saving a state (i.c. FinaliseRequesting) and an acknowledge event (i.c. FINALISING).

The distinction between a TransitoryShort (TS) state and a Processing state needs further analysis when expedited functions are involved. Let me try to illustrate this with an example that has troubled us already since the DVD-player 1st generation, namely optical disc tray control. The existing FSM is shown in Figure 33. For simplicity, the blocking feature and the disc-recognition have been left out.

[image: image33.wmf]Idle

Close()

Closing

Closed

[ready]/

^CLOSED

Open

Opening

Open()

Open()

[ready]/

^OPENED

Close()

Close()

Figure 33 Tray control, server side FSM, existing view
The Open() and Close() calls act as expedited functions since they interrupt each other in their transitory Closing state and Opening state. Note that e.g. in the Opening state the calls Close() and Open() can be invoked quickly in succession. The client is forced to inspect the events before calling the latter Open(). Otherwise a pending OPENED event in the Opening state (raised just before Close() call) could be erroneously interpreted as the response event of the latter Open() call. In fact the protocol of the FSM is error prone for the client.

The proposed alternative FSM is shown in Figure 34.

[image: image34.wmf]W:

Idle

TS:

CloseRequested

Close()

P:

Closing

[accepted]/

^CLOSING

W:

Closed

[ready]/

^CLOSED

W:

Open

P:

Opening

[accepted]/

^OPENING

TS:

OpenRequested

Open()

Open()

[ready]/

^OPENED

Close()

Close()

Figure 34 Tray control, server side FSM, alternative view

The Closing and Opening states are categorised as Processing states, because the tray motor needs time to move the tray. The CloseRequested and OpenRequested states serve to give feedback about the requesting function Close() and Open(). It is not possible to interrupt a Close() function in the CloseRequested state by another Open() function. After the Close() call the client must inspect the events in the CloseRequested state. Any OPENED event will be recognised as a race condition and ignored.

In a pattern (like DVD) where the result of state checking is returned by the function’s error code, the error code ERR_OK means that the server has accepted the function call. This successful error code resembles the response event (i.c. event CLOSING) of accepting a function to be executed. However, it does not force that the client inspects possible events due to race conditions. In a pattern (like RTA or OLAX) where the response event must always be checked, the pattern’s protocol forces the client to take care of possible race conditions. Prerequisite is the modeling of an FSM as in Figure 34 with response events to function requests.

The functionality of a server is among other things determined by the states that allow functions to be called. The client would like to call functions in as many meaningful states as possible. The server would like to offer as much service as possible, but it will impose restrictions to implement its functions in a reasonable, maintainable way. An obvious example is that the server does not like function requests in a Transitory state. For this reason in [RW2_SVL_IFACE_MGMT_A] the rule has been formed for model SAPIs: a server blocks during processing of an asynchronous function any (non-special) function. The Interface Call Pattern, described in [RW2_SVL_IFACE_MGMT_A], is the mechanism that realises this rule.

The client has complaints with respect to this rule for the following reasons:

· The client must wait until a function can be called.

· The client must wait a long time, especially in case of a TransitoryLong state.

· The client’s call could be independent of the pending asynchronous function.

· The burden of waiting and re-trying the intended function is on the client and not on the server.

Implementing a TransitoryLong state with a TransitoryShort state and a Processing state, see above, partly solves the problem. A full solution could be that during a TransitoryShort state a server (either model or underlying service) would queue a request and handle it after leaving the TransitoryShort state. However, the Interface Call Pattern prescribes that a call during a Transitory state returns with ERR_BLOCKED.

In OLAX an alternative solution has been chosen: all asynchronous functions are tagged as synchronous, so that there are no Transitory states anymore. According to the above terminology, all Transitory states have become Processing states, and all response events have become autonomous events. Furthermore, a table indicates which function may be called in which state, including those artificial Processing states.

My conclusions are that:

· Due to practical shortcomings in the Interface Call Pattern, the OLAX project has chosen a creative usage of this pattern.

· The most offensive situations, a server being in a TransitoryLong state, could have been solved in an alternative way.

· The OLAX practice is confusing with respect to terminology asynchronous versus synchronous.

· The adopted practice has not been documented (in [RW2_SVL_IFACE_MGMT_A]).

� See terminology section for definitions

� The subtle differences between components and filters are ignored in this document. They are not relevant for the patterns.

� Modeling a waiting state in the client’s FSM is needed for synchronisation; it is not a time issue.

� If starting a server always succeeds then the server’s Starting state is not needed.

� An advanced solution could use a critical section: in the back-end the 2 actions of raising the event and changing state are done inside the critical section; in the front-end checking the state and related processing must also be done inside the critical section.(Note that this solution is only mentioned, and not preferred to be implemented.)

� During my reviewing experience of many FSM pairs I have corrected many errors dealing with race conditions in the FSMs.

� Also functions not affecting the FSM state might be handled in the back-end and hence put commands in a queue.

� The server’s specification normally specifies a single client. This not only eases a server’s implementation; it also prevents a troublesome implementation of multiple clients that should co-ordinate controlling the server and maintaining the server’s FSM.

� This behaviour also applies for other functions that are handled in the server’s back-end.

� The server can not distinguish between a race condition and a bug in the client. It is the client’s responsibility to solve the race condition using the server’s feedback.

Page 4/41

[image: image35.bmp]_1155036718.unknown

_1155037053.unknown

_1155037214.unknown

_1160814064.unknown

_1160823419.unknown

_1160823576.unknown

_1160819228.unknown

_1155037290.unknown

_1155037133.unknown

_1155036871.unknown

_1155036966.unknown

_1155036794.unknown

_1155036111.unknown

_1155036413.unknown

_1155036566.unknown

_1155036642.unknown

_1155036490.unknown

_1155036263.unknown

_1155036338.unknown

_1155036187.unknown

_1155035776.unknown

_1155035957.unknown

_1155036035.unknown

_1155035877.unknown

_1155035457.unknown

_1155035609.unknown

_1155035686.unknown

_1155035532.unknown

_1155035309.unknown

_1155035382.unknown

_1155035160.unknown

_1155035233.unknown

_1155034141.unknown

_1155035086.unknown

